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Abstract

The control of flexural wave motion on a beam using a vibration neutraliser is the subject of this paper. A vibration

neutraliser will generally suppress a flexural wave significantly over a narrow frequency band. Although many machines

operate at a nominal single frequency, very often there is drift in this frequency. Thus, there is a need for a wide-band

vibration neutraliser to attenuate vibration over a reasonably wide frequency range. This paper investigates whether there

is any merit in using a particular configuration of neutraliser for such a purpose. The investigation includes a study into the

effects of attaching the neutraliser to the beam in different ways. Simple analytical models are developed to aid physical

interpretation and facilitate design procedure. Experimental results are also presented to validate the theory.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are many practical applications that involve flexural wave motion in beam-like structures found in
many engineering sectors such as automotive, aircraft and civil. A simple passive method to control such a
wave is to use a vibration neutraliser. For many years vibration neutralisers have not been used explicitly to
control waves. The first patented vibration neutraliser was invented by Frahm [1], which consisted of a spring
and mass (an undamped absorber). However, the fundamental theory of the vibration neutraliser has been
credited to Ormondroyd and Den Hartog [2] when they analysed the device and showed that additional
damping increases its effectiveness. Den Hartog [3] subsequently suggested both an optimum damping and
stiffness for a neutraliser used to control a single mode of vibration. Snowdon [4] also conducted much of the
key work on the application of vibration neutralisers. He considered an optimisation procedure, similar to
that used by Den Hartog, for a machine supported by a rubber-like material. He also found that a reasonable
vibration reduction could be achieved by using a neutraliser consisting of two springs with one of them in
series with a damper [5].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Ideally, a neutraliser consists of a mass, a spring and a damper. In reality, however, a neutraliser can be
made of any resonant system, examples of which are a plate-like system [6,7], a centrifugal pendulum [8] and a
cruciform beam arrangement [9,10].

When a neutraliser is used to suppress wave motion on a beam, it has different optimum parameters [11]
than those described by Den Hartog. An undamped device will only completely suppress a flexural wave at a
single excitation frequency, which here is called the tuned frequency. Such a device can be considered to be a
tunable narrow-band vibration control device. In practice, very often there is a drift in the excitation frequency
that induces vibration. Thus, there is a need to design a wide-band vibration neutraliser to attenuate vibration
over a reasonably wide frequency range. Brennan [11] and Mead [12], studied a single neutraliser that exerts a
force only on an infinite beam. However, as mentioned above, this is a narrow-band device. Clark [13]
observed that a single neutraliser that exerts a coupled force and a moment could improve the bandwidth. This
paper follows up on this work and investigates the design of a beam-like neutraliser that exerts an uncoupled

force and moment to determine whether this can further improve the performance.
The paper is organised into six sections. Following this introduction, Section 2 describes an analytical model

for flexural wave transmission on an infinite beam for different neutraliser attachment configurations. In the
third section, simple expressions are derived for the tuned frequency and the amount by which an incident
flexural wave is suppressed (minimum transmission ratio). The practical implementation of a neutraliser is
discussed in the fourth section. In the fifth section some experimental work is discussed and this is followed by
some conclusions in the final section.
2. Neutraliser attachment configurations

Four ways in which a neutraliser can be attached to an infinite beam are described in this section. For
convenience, the term ‘force neutraliser’ is used for a neutraliser that exerts a force only to the beam; the term
‘moment neutraliser’ is used for a neutraliser that exerts a moment only to the beam. The term ‘coupled
force–moment neutraliser’ and ‘uncoupled force–moment neutraliser’ are used for neutralisers that exert a
coupled and an uncoupled force and moment to the beam respectively.

Figs. 1(a–d) show four different types of neutraliser—the force neutraliser, the moment neutraliser, the
coupled force–moment and the uncoupled force–moment neutraliser—each attached to an infinite beam. In
the figure, m denotes the total mass of the neutraliser, ks denotes the stiffness of the hysteretically damped
spring, Z denotes the loss factor, and a denotes the length of the moment arm of the neutraliser, which is
assumed to be rigid and massless. If the infinite beam is excited and a propagating wave Ai is incident on a
neutraliser, waves are generated downstream of the neutraliser; At, which is termed the transmitted
propagating wave and Ant, which is termed the transmitted near field wave. The incident wave is also partly
reflected upstream as a reflected propagating wave, Ar and a reflected near-field wave, Anr. Throughout this
paper e jot time dependence is assumed, but is omitted for clarity. Of particular interest here is the transmission
ratio, which is the square of the modulus of the ratio of transmitted propagating wave to the incident wave
and is given by

t ¼
At

Ai

����
����
2

. (1)

The transmitted wave is the superposition of the incident wave and the wave generated by the force F, and
moment M, applied by the neutraliser and is given by [13,14]

At ¼ Ai þ
1

4
½ �j 1 �

F

EIk3
f

M

EIk2
f

2
66664

3
77775 (2)

where E, I and kf are the Young’s Modulus, the second moment of area, and the flexural wavenumber of the
beam, respectively. The relationships between the force and the moment applied to the beam, and the
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Fig. 1. Various configurations of a neutraliser and hysteretically damped spring attached to an infinite beam: (a) force, (b) moment, (c)

coupled force–moment and (d) uncoupled force–moment. The moment arm is assumed to be rigid and massless and has length a.
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displacement w(0), and the slope of the beam w0(0) at the point where the neutraliser is attached are given by

F

EIk3
f

M

EIk2
f

2
66664

3
77775 ¼ ��t

1 �s

�s s2

� � wð0Þ

w0ð0Þ

kf

2
64

3
75, (3)

where et is the non-dimensional translational dynamic stiffness of the neutraliser given by [10]

�t ¼
Kt

EIk3
f

¼
cð1þ jZÞ

O2 � 1� jZ
, (4)

where Kt is the neutraliser translational dynamic stiffness, O ¼ o=on is the ratio of the excitation frequency to
the neutraliser undamped natural frequency of translational motion, c is the mass ratio, which is the ratio
of the neutraliser mass m, to the beam mass of approximately one-sixth of wavelength of the beam, and is
given by

c ¼
o2m

EIk3
f

¼
m

rAl=2p
, (5)
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where l, r and A are the flexural wavelength, the density and the cross sectional area of the beam respectively.
It should be noted that the mass ratio is frequency dependent as l / o0:5; s is the ratio of the neutraliser
moment arm length a, to approximately one-sixth of a wavelength of the beam and is given by

s ¼
a

l=2p
. (6)

The displacement and slope of the beam at the neutraliser attachment point are a function of the incident
propagating wave and the force and moment applied by the neutraliser and are given by

wð0Þ

w0ð0Þ

kf

2
64

3
75 ¼ 1

�j

" #
Ai þ

1

4

�ð1þ jÞ 0

0 ð1� jÞ

" # F

EIk3
f

M

EIk2
f

2
66664

3
77775. (7)

Combining Eqs. (2), (3) and (7) gives the ratio of the transmitted to the incident wave for a neutraliser that
applies a coupled force and a moment to the beam.

At

Ai

¼ 1�
�t

4
½ �j 1 �

1 �s

�s s2

� �
1 0

0 1

� �
þ
�t

4

�ð1þ jÞ 0

0 ð1� jÞ

" #
1 �s

�s s2

� �" #�1
1

�j

" #
(8)

The neutraliser in Fig. 1(a) is attached such that it exerts a force only on the beam, which means that s ¼ 0.
Applying this condition and substituting for At=Ai from Eq. (8) into Eq. (1) results in

t ¼ 1þ
j�t

4� �t � j�t

����
����
2

. (9)

The neutraliser in Fig. 1(b) is attached such that it exerts a moment only to the beam. The moment arm is

assumed to be a rigid and massless link. This means that the moment arm ratio matrix
1 �s

�s s2

� �
in Eq. (8)

becomes
0 0

0 s2

� �
. In this case Eq. (8) combines with Eq. (1) to give

t ¼ 1þ
js2�t

4þ s2�t � js2�t

����
����
2

. (10)

The neutraliser in Fig. 1(c) is attached such that it exerts a coupled force and moment to the beam. This
means that the Eq. (8) holds, with nonzero terms for all elements of the moment arm ratio matrix. In this case,
Eqs. (1) and (8) combine to give the transmission ratio

t ¼ 1þ
��t � �ts

2 þ jð�t þ �ts
2Þ

4þ 2�ts2 þ jð4� 2�tÞ

����
����
2

. (11)

The neutraliser in Fig. 1(d) is attached such that it exerts an uncoupled force and moment to the beam. This
means that the off-diagonal terms of the moment arm ratio matrix are zero. The resulting transmission ratio
can be found as before, and is given by

t ¼ 1þ
j�t

4� �t � j�t

þ
js2�t

4þ s2�t � js2�t

����
����
2

(12)

It can be seen that the transmission ratio is a combination of Eqs. (9) and (10). The second term in Eq. (12)
represents the force or translational effect and the third term is due to the moment arm or rotational effect.

Fig. 2 shows the transmission ratios for the four types of neutraliser for s2n ¼ 0:5, cn ¼ 0:5 and Z ¼ 0:001,
which is further discussed in the next section. It should be noted that throughout this paper, the subscript n

denotes that the parameter is evaluated at the neutraliser undamped natural frequency of translational
motion.
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Fig. 2. The transmission ratio for four different configurations of neutraliser attachment as shown in Fig. 1(a–d), s2n ¼ 0:5, cn ¼ 0:5 and

Z ¼ 0:001. Solid line, force neutraliser; dashed line, moment neutraliser; dashed-dotted line, coupled force–moment neutraliser; dotted line,

uncoupled force–moment neutraliser.
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3. Predicting the tuned frequency and the minimum transmission ratio

The tuned frequency is defined as the frequency at which the transmission ratio is minimum. In Fig. 2, it can
be seen that the force neutraliser has a tuned frequency greater than its natural frequency and the moment
neutraliser has a tuned frequency less than its natural frequency. The uncoupled force–moment neutraliser has
two tuned frequencies, one of which is the same as the tuned frequency for the coupled force–moment
neutraliser; the other tuned frequency always occurs at the natural frequency of the neutraliser. In the
following subsections approximate expressions for the tuned frequencies and transmission ratios at these
frequencies for all four configurations are derived.

3.1. Force neutraliser

Substituting Eq. (4) into Eq. (9), and setting the transmission ratio and loss factor to zero, the tuned
frequency, Ot, is found to be

Ot ¼ 1þ
cn

4
O1=2

t

� �1=2

, (13)

where cn is the mass ratio evaluated at the natural frequency of the neutraliser. There is no explicit expression
for the tuned frequency, but an approximate expression can be derived when cn=451, which is

Ot � 1þ
cn

8
. (14)

This shows that for a force neutraliser, the tuned frequency is always greater than the natural frequency of
the neutraliser. In order to reflect a propagating wave with a discontinuity consisting of a translational
constraint, a stiffness-like component is required [11]. An infinite beam has a point translational dynamic
stiffness characteristic that consists of a mass-like component in parallel with a damper. At the frequency at
which an incident propagating wave on the neutraliser is reflected, a local resonance exists between the mass-
like component of the beam and the stiffness-like behaviour of the neutraliser. The dynamic stiffness of a
neutraliser is mass-like below its natural frequency and stiffness-like above its natural frequency, which
explains why the tuned frequency is always greater than the natural frequency for a force neutraliser.



ARTICLE IN PRESS
H. Salleh, M.J. Brennan / Journal of Sound and Vibration 303 (2007) 501–514506
Combining Eqs. (4), (9) and (14) gives the transmission ratio at the tuned frequency [11]

tt ¼
ð1þ ðct=4ÞÞ

2

ð1þ ðct=4ZÞÞ
2
. (15)

A practical neutraliser would generally have small mass and damping ratios. Thus, if ct=451 and ct=4Zb1,
where ct � cn, then Eq. (15) reduces to

tt �
4Z
cn

� �2

. (16)

This shows that the minimum transmission ratio is proportional to the square of the loss factor and
inversely proportional to the square of the mass ratio. Thus, if the mass ratio is increased, the attenuation of
an incident propagating wave increases, but the tuned frequency also changes. If the mass ratio is increased by
adding to the neutraliser mass, the natural frequency of the neutraliser will decrease, but the difference
between the natural frequency and the tuned frequency will increase.
3.2 Moment neutraliser

Substituting Eq. (4). into Eq. (10), setting the transmission ratio and loss factor to zero, the tuned frequency,
Ot is found to be

Ot ¼ 1�
cn

4
s2nO

3=2
t

� �1=2

. (17)

Again there is no explicit expression for the tuned frequency, but if it is assumed that cns2n=451 then the
tuned frequency can be approximated by

Ot � 1�
cn

8
s2n. (18)

Eq. (18) shows that for a moment neutraliser the tuned frequency is always less than the natural frequency
of the neutraliser. This is opposite to the force neutraliser where the tuned frequency is always larger than the
natural frequency of the neutraliser. This is because a rotational discontinuity needs to present as a mass-like
discontinuity. An infinite beam has a point rotational dynamic stiffness that consists of a stiffness-like
component in parallel with a damper. At the frequency at which an incident propagating wave on the
neutraliser is reflected, a local resonance exists between the stiffness-like component of the beam and the mass-
like behaviour of the neutraliser. This explains why the tuned frequency is always less than the natural
frequency for a moment neutraliser.

Combining Eqs. (4), (10) and (17) gives the transmission ratio at the tuned frequency

tt ¼
ð1� ðct=4Þs

2
t Þ

2

ð1þ ðct=4ZÞs2t ð1� ZÞÞ2 þ ððct=4Þs
2
t Þ

2
. (19)

If Z51, cts
2
t =451 but cts

2
t =4Zb1, where ct � cn, st � sn then Eq. (19) simplifies to

tt �
4Z
cns2n

� �2

, (20)

which is similar to the expression for the transmission ratio of the force neutraliser given by Eq. (16), but has
the additional parameter of the moment arm ratio. This means that, for the same neutraliser mass, for a
moment neutraliser to be more effective than the force neutraliser, it is required that snX1 or the moment arm
to be greater than about one sixth of a flexural wavelength of the beam at the neutraliser natural frequency.
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3.3. Coupled force– moment neutraliser

A neutraliser that exerts a coupled force and moment on the infinite beam as in Fig. 1(c) has a transmission
ratio given by Eq. (11). Substituting Eq. (4) into Eq. (11), and setting the transmission ratio and loss factor to
zero, the tuned frequency, Ot is found to be

Ot ¼ 1þ
cnO

1=2
t

4
ð1� s2nOtÞ

 !1=2

(21)

It can be seen from Eq. (21) that the tuned frequency depends upon both the mass ratio and the moment
arm as expected. If the moment arm is very small then the equation reduces to that for the force neutraliser
(Eq. (13)). If the moment arm ratio is large such that s2nb1 then Eq. (21) reduces to that for the moment
neutraliser (Eq. (17)). Again there is no explicit expression for the tuned frequency, but if it is assumed that
s2n51 and that cn=451 then Eq. (21) simplifies to

Ot � 1þ
cn

8
ð1� s2nÞ (22)

The transmission ratio at the tuned frequency is found by combining Eqs. (4), (11) and (21), to give

tt ¼
2ð1þ ðct=4Þð1� s2t ÞÞ

2

ð1þ ðct=4ZÞð1þ s2t þ 2ZÞÞ2 þ ð1þ ðct=4ZÞð1þ s2t � 2s2t ZÞÞ
2

(23)

If Z51, s2t 51, ct=451 and ct=4Zb1, where ct � cn, st � sn then this simplifies to

tt �
4Z

cnð1þ s2nÞ

� �2

(24)

Eq. (24) shows that, the transmission ratio at the tuned frequency is less than that achievable with either a
force or a moment neutraliser; this can also be seen in Fig. 2.

3.4. Uncoupled force– moment neutraliser

A neutraliser attached to an infinite beam via a moment arm, which exerts both a force and moment on the
beam, as in Fig. 1(d) has a transmission ratio given by Eq. (12). Substituting Eq. (4) into Eq. (12), and setting
the transmission ratio and loss factor to zero, two tuned frequencies can be found. They are

Ot1 ¼ 1, (25a)

Ot2 ¼ 1þ
cnO

1=2
t

4
ð1� s2nOtÞ

 !1=2

. (25b)

Eq. (25b) is the same as Eq. (21). As can be seen in Fig. 2, one of the tuned frequencies for the uncoupled
force–moment neutraliser coincides with the tuned frequency for the coupled force–moment neutraliser. The
first tuned frequency occurs because the neutraliser independently applies a large force and a large moment to
the beam at the neutraliser resonance frequency, thus, significantly reducing the lateral and rotational motion
of the beam at this frequency, and hence reflecting the incident propagating wave.

The transmission ratio at the first tuned frequency, Ot1 ¼ 1, is found as in the previous cases, and given by

tt1 ¼
b

ðð4bþ ctÞ
2
þ c2

t Þ
2
þ ððbð4� 2cts

2
t Þ þ cts

2
t Þ

2
þ ðcts

2
t Þ

2
Þ
2
, (26)

where

b ¼ 16Z2 1þ
ct

4
ð1� s2t Þ

� �2

þ ðctð1� s2t ÞÞ
2

 !
.
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If Z51, s2t 51 and ct51, where ct � cn, st � sn the transmission ratio simplifies to

tt1 �
2Zð1� s2nÞ

cns2n

� �2

. (27)

The transmission ratio at the second tuned frequency is found as before and is given by

tt2 ¼

ctð1� s2t Þ 1þ
ct

2
ð1þ s2t Þ

� �� �2

þ 4Z 1þ
ct

4
ð1� s2t Þ

� �� �2

1þ
ct

4Z
ð1þ ZÞ

� �2

þ
ct

4Z
ðs2t � ZÞ

� �2

þ 1þ
cts

2
t

4Z
ð1� ZÞ

� �2

þ
ct

4Z
ðs2t Zþ 1Þ

� �2
. (28)

If Z51, s2t 51, ðct=4Þ51 and ðct=4ZÞb1, where ct � cn, st � sn then this simplifies to

tt2 �
4Zð1� s2nÞ

cnð1þ s4nÞ

� �2

. (29)

It can be seen that, as with the other neutralisers that apply a moment to the beam, the effectiveness of the
device at the second tuned frequency is dependent upon both the mass ratio and the length of the moment
arm. However, it can also be seen that the moment arm is put to better effect in this device than with the
previous two devices. The added advantage of the uncoupled force–moment neutraliser is that it has two tuned
frequencies, which means that it is more effective over a wider frequency range.

A further parameter of interest with the uncoupled force–moment neutraliser is the peak transmission ratio
between the two minima. This can be seen in Fig. 2. An expression for this can be determined by noting that
this local maximum occurs approximately half way between the tuned frequencies, that is when

Op � 1þ
cn

16
ð1� s2nÞ. (30)

This can be combined with Eqs. (4) and (12), and if damping is neglected gives

tp �
ðsn � 1Þ2ðs4n � 2s2n þ 1Þ

ð5s4n þ 2s2n þ 1Þðs4n þ 2s2n þ 5Þ
. (31)

This gives a reasonable approximation for the local maximum between 0:1os2no0:9 as when s2n ¼ 0 and
s2n ¼ 1 there is only one peak as can be seen by Eq. (25b). Although a value of s2n41 is possible in principle it is
unlikely in practice. It can be readily seen from Eq. (31) that the only factor that affects the local maximum in
the response is the non-dimensional length of the moment arm. The minima in the transmission ratio and the
maximum response between the minima, given by Eqs. (27), (29) and (31) are plotted in Fig. 3 for Z ¼ 0:001
and cn ¼ 0:5. Although both minima in the transmission ratio are dependent on the mass ratio, the moment
arm, and the damping in the neutraliser, the ratio of the minima, i.e., the difference in attenuation (in dB) at
the tuned frequencies, is only dependent on the length of the moment arm. As the non-dimensional length of
the moment arm approaches unity, the two minima merge into one and the local maximum disappears as can
be seen in Fig. 3. Thus, the moment arm is an important parameter in controlling the attenuation and the
frequency range over which the device is effective.

4. Practical implementation of a neutraliser

A simple design of an uncoupled force–moment neutraliser consists of a beam with a mass attached at each
end as shown in Fig. 4. If this device is attached to a beam such that it lies across the beam as shown in Fig. 5a,
then it will act as a force neutraliser. If it is rotated through 901 so that it is in-line with the beam as shown in
Fig. 5b then it will act as an uncoupled force–moment neutraliser. As these configurations are simple to realise
practically, and because there appears to be some advantages in using an uncoupled force–moment
neutraliser, they are discussed in detail for the remainder of the paper.

Eq. (9) gives the transmission ratio for the force neutraliser. It is plotted in Fig. 6 for arbitrary properties of
the neutraliser and the beam, but with the conditions that, cn=451 and cn=4Zb1. The effects that the key
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Fig. 3. The relationship between the transmission ratios at the tuned frequencies, the local maximum between the two tuned frequencies,

and the non-dimensional moment arm. Z ¼ 0:001 and cn ¼ 0:5. Dotted line, tp; dashed line, tt1; solid line, tt2.
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parameters have on the transmission ratio are also shown in the figure. These parameters can be chosen to
design a neutraliser to give the required transmission ratio. They can also be used to characterise the
neutraliser based on experimental data. Shown in this figure are frequencies O1 and O2, which are the
frequencies at which the transmission ratio has a value of �3 dB. The difference between these frequencies is
roughly twice the difference between the tuned frequency and the natural frequency of the neutraliser, and is
given by O2 � O1 � cn=4. Therefore, this parameter can be used to extract the mass ratio from experimental
data. The peak attenuation shown in Fig. 6 can be determined from Eq. (16) and is given by 10 logðcn=4ZÞ

2.
Once the mass ratio has been determined, this expression can be used to determine the neutraliser loss factor.
This is demonstrated in the next section.

Provided that the masses attached to the neutraliser shown in Fig. 4, are much larger then the mass of the
beam from which the neutraliser is fabricated, then Eq. (12) can be used to predict the transmission ratio for
this type of neutraliser. It is plotted in Fig. 7 for arbitrary properties of the neutraliser and the beam, but with
the conditions that cns2n=451 and cns2n=4Zb1. Again, the key parameters are also shown in the figure. It is
also possible to extract the parameters from experimental data. The first parameter is sn which can be
determined by noting that a ¼ 10 logð1=tpÞ and sn is related to tp as in Eq. (31). Once sn is known, cn can be
determined by noting that Ot2 � Ot1 � cnð1� s2nÞ=8. Finally the expressions for the minima can be used to
determine the loss factor, Z. Since in practice there will be some differences, the average value should be
considered.
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Fig. 5. Attachment of the neutraliser on the beam: (a) force only configuration and (b) uncoupled force–moment configuration.
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Fig. 6. Transmission ratio for the case where a force only neutraliser is attached to an infinite beam. The properties if the neutraliser and

the beam are arbitrary, but cn=451 and cn=4Zb1.
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5. Experimental work

Experimental work was carried out to validate the performance of the uncoupled force–moment neutraliser
and to compare it with the force neutraliser. The experimental set up is shown in Fig. 8. A 4m beam was used
with an anechoic termination fabricated at each end using sand boxes. The properties of the beam are given in
Table 1. To calculate the transmission ratio, the flexural waves were decomposed from measurements from
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Fig. 8. Experimental set up for measuring the attenuation of a propagating flexural wave on a beam using neutraliser. The neutraliser and

accelerometer positions on the beam are also shown.

H. Salleh, M.J. Brennan / Journal of Sound and Vibration 303 (2007) 501–514 511
four accelerometers on the beam (PCB Type 352C22). The force transducer (PCB Type 208C01) was used as a
reference signal and the beam was excited with random noise using a Ling Dynamic Systems V201 shaker over
the frequency range 50–1600Hz for all the experiments.

To decompose the waves from acceleration measurements so that the transmission ratio could be calculated,
knowledge of the wavenumber is required. Therefore, prior to attaching the neutraliser to the beam, the
frequency–wavenumber relationship was estimated. Muggleton et al. [15] used pressure signals to calculate the
acoustic wavenumber for a fluid-filled pipe and a similar method was used here using the acceleration signals
to calculate the flexural wavenumber of the beam. Three accelerometers were positioned at 1, 1.04 and 1.08m,
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Table 1

Neutraliser and beam dimensions, and material properties

Neutraliser

Length of aluminium beam between mass centres (m) 53.5e�3

Width of beam (m) 5e�3

Thickness of beam (m) 2e�3

Density of aluminium beam (kgm�3) 2720

Young’s modulus of aluminium beam (Pa) 70e9

Brass mass at one end (kg) 7.5e�3

Beam

Length of steel beam (m) 4

Width of beam (m) 2.5e�3

Thickness of beam (m) 3e�3

Density of steel beam (kgm�3) 7500

Young’s modulus of steel beam (Pa) 210e9
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respectively, from the excitation point shown in Fig. 8. The wavenumber was calculated from these
measurements using

kf ¼
cos�1ð0:5ðð ~a1 þ ~a3Þ= ~a2ÞÞ

D
, (32)

where ~a1, ~a2, ~a3 are the complex amplitudes of the transfer accelerance at positions 1, 1.04 and 1.08m,
respectively, and D is the distance between the sensors. The resulting relationship between the wavenumber
and frequency was found to be kf ¼ 1:16

ffiffiffi
f

p
using a least squares fit to the measured frequency–wavenumber

characteristic. This relationship was also calculated using the data in Table 1, and found to be kf ¼ 1:17
ffiffiffi
f

p
.

Having determined the wavenumber, two accelerometers were placed upstream and two were placed
downstream of the neutraliser as shown in Fig. 8. The accelerometer positions were carefully positioned so
that the near-field wave amplitudes were negligible at these locations in the frequency range of 200–500Hz. It
was expected that the following waves would contribute to the overall vibration at the measurement positions;
the incidence propagating wave Ai, the transmitted wave At, the reflected wave due to the neutraliser Ar1, and
the reflected wave due to the right-hand side of the sand box Ar2. The signal from the force transducer was
used as the reference signal. The relationships between these waves and the accelerance measurements are
given by [14]

Ai

Ar1

At

Ar2

2
6664

3
7775 ¼ F

�o2

e�jkf x1 ejkf ðx1�l1Þ 0 0

e�jkf x2 ejkf ðx2�l1Þ 0 0

0 0 e�jkf ðx3�l1Þ ejkf ðx3�l2Þ

0 0 e�jkf ðx4�l1Þ ejkf ðx4�l2Þ

2
6664

3
7775
�1 ~a1

~a2

~a3

~a4

2
6664

3
7775, (33)

where x1 ¼ 0:6m, x2 ¼ 0:64m, x3 ¼ 1:66m and x4 ¼ 1:70m and l1, l2 are shown in Fig. 8. Measurements were
taken for both the force neutraliser configuration shown in Fig. 5a and the uncoupled force–moment
neutraliser configuration shown in Fig. 5b.

Figs. 9 and 10 show the results for the force and the uncoupled force–moment neutralisers respectively. The
experimental data were used to determine the parameters as discussed in Section 4, and the resulting
simulations are also plotted in Figs. 9 and 10. For the force neutraliser, the values used for the simulation were
cn ¼ 0:494, Z ¼ 0:021, whereas for the uncoupled force–moment neutraliser the values used for the simulation
were cn ¼ 0:528, Z ¼ 0:007 and sn ¼ 0:5.

The characteristics of the neutralisers are summarised in Table 2. It can be seen that the analytical models fit
the measured results very well, provided that the parameters used for the simulations are determined from the
experimental data. There are some differences between the predicted and measured natural frequencies for
both configurations. This is probably due to the fact that it is difficult to estimate the effective length of the
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Fig. 10. Experimental result and theoretical prediction of the transmission loss for an uncoupled force–moment neutraliser attached to the

beam. Solid line, experimental result; dashed line, simulation; cn ¼ 0:528, Z ¼ 0:007 and sn ¼ 0:5.

Table 2

Measured neutraliser characteristics compared with some predictions from the original design

Estimated from original

design

Force neutraliser Uncoupled force-moment

neutraliser

Natural frequency (Hz) 321 306 323

Loss factor, Z — 0.021 0.007

Mass ratio, cn 0.585 0.494 0.528

Moment arm ratio, sn 0.586 — 0.500

Attenuation at Ot1 (dB) — 15 22

Attenuation at Ot2 (dB) — — 28

3dB bandwidth (Hz) — 38 46
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Fig. 9. Experimental result and theoretical prediction of the transmission loss for a force only neutraliser attached to the beam. Solid line,

experimental results; dashed line, simulation; cn ¼ 0:494, Z ¼ 0:021.
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beam that contributes to the neutraliser stiffness. The tightness of the connection between the neutraliser and
the beam which is assumed to be infinitely rigid can also vary the neutraliser stiffness. Likewise, there is
variability between the loss factor for both configurations, and this is probably due to the same reason.

Inspection of Fig. 9 shows that, for the force neutraliser, the attenuation in the transmission ratio at the
tuned frequency of the force neutraliser was about 15 dB. Inspection of Fig. 10 shows that, for the uncoupled
force–moment neutraliser, the attenuation in the transmission ratio at the two tuned frequencies were 22 and
28 dB, respectively. The �3 dB bandwidth for the two configurations were 38 and 48Hz, respectively, and the
peak in the transmission ratio between the two minima for the uncoupled force–moment neutraliser was about
�15 dB. Thus, it can be seen that the uncoupled force–moment neutraliser out-performs the force only
neutraliser in all respects.

6. Conclusions

In this paper, four different neutraliser configurations to suppress a propagating flexural wave on a beam
have been compared. Two of these, the force-only neutraliser and the uncoupled force moment neutraliser can
both be realised simply from a single device, but with different orientation when attached to the beam. These
have been studied in detail both analytically and experimentally and have both shown to be effective in
attenuating a propagating flexural wave on a beam. However, the uncoupled force–moment neutraliser has
proven to be more effective because it can significantly attenuate both translational and rotational motion.
Additionally it has two frequencies where it is particularly effective and has a wider bandwidth.
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